Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Sci Data ; 9(1): 294, 2022 06 13.
Article in English | MEDLINE | ID: covidwho-1890207

ABSTRACT

Since 2019, the novel coronavirus (SARS-COV-2) disease (COVID-19) has caused a worldwide epidemic. Anti-coronavirus peptides (ACovPs), a type of antimicrobial peptides (AMPs), have demonstrated excellent inhibitory effects on coronaviruses. However, state-of-the-art AMP databases contain only a small number of ACovPs. Additionally, the fields of these databases are not uniform, and the units or evaluation standards of the same field are inconsistent. Most of these databases have not included the target domains of ACovPs and description of in vitro and in vivo assays to measure the inhibitory effects of ACovPs. Here, we present a database focused on ACovPs (ACovPepDB), which contains comprehensive and precise ACovPs information of 518 entries with 214 unique ACovPs manually collected from public databases and published peer-reviewed articles. We believe that ACovPepDB is of great significance for facilitating the development of new peptides and improving treatment for coronavirus infection. The database will become a portal for ACovPs and guide and help researchers perform further studies. The ACovPepDB is available at http://i.uestc.edu.cn/ACovPepDB/ .


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Databases, Chemical , Humans , Peptides/chemistry , Peptides/pharmacology , Peptides/therapeutic use , SARS-CoV-2/drug effects
2.
Infect Genet Evol ; 96: 105106, 2021 12.
Article in English | MEDLINE | ID: covidwho-1506080

ABSTRACT

Coronaviruses (especially SARS-CoV-2) are characterized by rapid mutation and wide spread. As these characteristics easily lead to global pandemics, studying the evolutionary relationship between viruses is essential for clinical diagnosis. DNA sequencing has played an important role in evolutionary analysis. Recent alignment-free methods can overcome the problems of traditional alignment-based methods, which consume both time and space. This paper proposes a novel alignment-free method called the correlation coefficient feature vector (CCFV), which defines a correlation measure of the L-step delay of a nucleotide location from its location in the original DNA sequence. The numerical feature is a 16×L-dimensional numerical vector describing the distribution characteristics of the nucleotide positions in a DNA sequence. The proposed L-step delay correlation measure is interestingly related to some types of L+1 spaced mers. Unlike traditional gene comparison, our method avoids the computational complexity of multiple sequence alignment, and hence improves the speed of sequence comparison. Our method is applied to evolutionary analysis of the common human viruses including SARS-CoV-2, Dengue virus, Hepatitis B virus, and human rhinovirus and achieves the same or even better results than alignment-based methods. Especially for SARS-CoV-2, our method also confirms that bats are potential intermediate hosts of SARS-CoV-2.


Subject(s)
Genome, Viral/genetics , Phylogeny , Sequence Analysis, DNA/methods , Coronavirus/genetics , Dengue Virus/genetics , Hepatitis B/genetics , Humans , Models, Genetic , Rhinovirus/genetics , SARS-CoV-2/genetics , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL